XSY4313 seq

显然有两个 log\log 的做法: ijrirjj<diS(j,min{ri,rj})=ijrjj<dirj<riS(j,rj)+ijrirjj<dirjriS(j,ri)\sum_{\begin{aligned}&i\le j\le r_i\\&r_j-j<d_i\end{aligned}}\text{S}(j,\min\{r_i,r_j\})=\sum_{\begin{aligned}&i\le j\\&r_j-j<d_i\\&r_j<r_i\end{aligned}}\text{S}(j,r_j)+\sum_{\begin{aligned}&i\le j\le r_i\\&r_j-j<d_i\\&r_j\ge r_i\end{aligned}}\text{S}(j,r_i) 类似三维偏序

考虑一个阈值 ridir_i-d_i,分别考虑 jj 在区间 [i,ridi][i,r_i-d_i](ridi,ri](r_i-d_i,r_i] 的情况

ijrirjj<diS(j,min{ri,rj})=ijridirjj<diS(j,rj)+ridi<jrirjj<diS(j,min{ri,rj})=ijridirjj<diS(j,rj)+ridi<jriS(j,min{ri,rj})ridi<jrirjjdiS(j,ri)=ijridirjj<diS(j,rj)+ridi<jrirjriS(j,rj)+ridi<jrirj>riS(j,ri)ridi<jrirjjdiS(j,ri) \begin{aligned} &\sum_{\begin{aligned}&i\le j\le r_i\\&r_j-j<d_i\end{aligned}}\text{S}(j,\min\{r_i,r_j\})\\ =&\sum_{\begin{aligned}&i\le j\le r_i-d_i\\&r_j-j<d_i\end{aligned}}\text{S}(j,r_j)+\sum_{\begin{aligned}&r_i-d_i< j\le r_i\\&r_j-j<d_i\end{aligned}}\text{S}(j,\min\{r_i,r_j\})\\ =&\sum_{\begin{aligned}&i\le j\le r_i-d_i\\&r_j-j<d_i\end{aligned}}\text{S}(j,r_j)+\sum_{r_i-d_i< j\le r_i}\text{S}(j,\min\{r_i,r_j\})-\sum_{\begin{aligned}&r_i-d_i< j\le r_i\\&r_j-j\ge d_i\end{aligned}}\text{S}(j,r_i)\\ =&\sum_{\begin{aligned}&i\le j\le r_i-d_i\\&r_j-j<d_i\end{aligned}}\text{S}(j,r_j)+\sum_{\begin{aligned}&r_i-d_i< j\le r_i\\&r_j\le r_i\end{aligned}}\text{S}(j,r_j)+\sum_{\begin{aligned}&r_i-d_i< j\le r_i\\&r_j>r_i\end{aligned}}\text{S}(j,r_i)-\sum_{\begin{aligned}&r_i-d_i< j\le r_i\\&r_j-j\ge d_i\end{aligned}}\text{S}(j,r_i) \end{aligned}

这四个东西都可以第一维差分,第二维树状数组做

作者

Fisher Cai

发布于

2022-03-19

更新于

2025-07-22

许可协议

评论

Your browser is out-of-date!

Update your browser to view this website correctly.&npsb;Update my browser now

×