n 维球的体积和表面积

这是一个不依赖 Wallis 公式的方法。

nn 维的半径为 RR 的球的体积和面积分别为 Vk(R)V_k(R)Sk(R)S_k(R)。有以下关系 Vk(R)=RRVk1(R2r2)dr=π2π2Vk1(Rcosθ)d(Rsinθ)=Rπ2π2Vk1(Rcosθ)cosθdθSk(R)=π2π2Sk1(Rcosθ)Rdθ=Rπ2π2Sk1(Rcosθ)dθVk(R)=0RSk(r)dr \begin{aligned} V_k(R)&=\int_{-R}^RV_{k-1}(\sqrt{R^2-r^2})\,\mathrm{d}r\\ &=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}V_{k-1}(R\cos\theta)\,\mathrm{d}(R\sin\theta)\\ &=R\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}V_{k-1}(R\cos\theta)\cos\theta\,\mathrm{d}\theta\\ S_k(R)&=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}S_{k-1}(R\cos\theta)R\,\mathrm{d}\theta\\ &=R\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}S_{k-1}(R\cos\theta)\,\mathrm{d}\theta\\ V_k(R)&=\int_{0}^RS_k(r)\,\mathrm{d}r \end{aligned}

并且我们知道 V1(R)=2R,S1(R)=2,V2(R)=πR2,S2(R)=2πR,V3(R)=43πR3,S3(R)=4πR2V_1(R)=2R,S_1(R)=2,V_2(R)=\pi R^2,S_2(R)=2\pi R,V_3(R)=\frac{4}{3}\pi R^3,S_3(R)=4\pi R^2。据此可以断言 Vk(R)=akRk,Sk(R)=bkRk1V_k(R)=a_kR^k,S_k(R)=b_kR^{k-1}Vk(R)=Rπ2π2Vk1(Rcosθ)cosθdθ=Rπ2π2ak1Rk1coskθdθ=Rkak1π2π2coskθdθSk(R)=Rπ2π2Sk1(Rcosθ)dθ=Rπ2π2bk1Rk2cosk2θdθ=Rk1bk1π2π2cosk2θdθVk(R)=0RSk(r)dr=0Rbkrk1dr=1kbkRk \begin{aligned} V_k(R)&=R\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}V_{k-1}(R\cos\theta)\cos\theta\,\mathrm{d}\theta\\ &=R\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}a_{k-1}R^{k-1}\cos^k\theta\,\mathrm{d}\theta\\ &=R^ka_{k-1}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^k\theta\,\mathrm{d}\theta\\ S_k(R)&=R\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}S_{k-1}(R\cos\theta)\,\mathrm{d}\theta\\ &=R\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}b_{k-1}R^{k-2}\cos^{k-2}\theta\,\mathrm{d}\theta\\ &=R_{k-1}b_{k-1}\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^{k-2}\theta\,\mathrm{d}\theta\\ V_k(R)&=\int_{0}^RS_k(r)\,\mathrm{d}r\\ &=\int_0^Rb_kr^{k-1}\,\mathrm{d}r\\ &=\frac{1}{k}b_kR^k \end{aligned}

f(k)=π2π2coskθdθf(k)=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\cos^k\theta\,\mathrm{d}\thetaak=f(k)ak1bk=f(k2)bk1ak=1kbk \begin{align} a_k&=f(k)a_{k-1}\\ b_k&=f(k-2)b_{k-1}\\ a_k&=\frac{1}{k}b_k \end{align} a1=b1=2,f(0)=π,f(1)=2a_1=b_1=2,f(0)=\pi,f(1)=2,带入 (1)(2)(1)(2)ak=2f(2)f(3)f(k)bk=2f(0)f(1)f(k2) \begin{aligned} &a_k=2f(2)f(3)\cdots f(k)\\ &b_k=2f(0)f(1)\cdots f(k-2) \end{aligned} 再带入 (3)(3)f(k1)f(k)=2πk f(k-1)f(k)=\frac{2\pi}{k} 将上式和 f(0)=π,f(2)=π2f(0)=\pi,f(2)=\frac{\pi}{2} 代回 (1)(2)(1)(2)Vk(R)={πk/2(k/2)!Rkk0(mod2)π(k1)/21232k2Rk=πk/2(12)!1232k2Rkk1(mod2)=πk/2(k/2)!RkSk(R)=Vk(R)kR \begin{aligned} V_k(R)&=\begin{cases} \frac{\pi^{k/2}}{(k/2)!}R^k & k\equiv0\pmod 2\\ \frac{\pi^{(k-1)/2}}{\frac{1}{2}\frac{3}{2}\cdots\frac{k}{2}}R^k=\frac{\pi^{k/2}}{(-\frac{1}{2})!\frac{1}{2}\frac{3}{2}\cdots\frac{k}{2}}R^k & k\equiv1\pmod 2 \end{cases}\\ &=\frac{\pi^{k/2}}{(k/2)!}R^k\\ S_k(R)&=\frac{V_k(R)}{kR} \end{aligned}